minimal submanifolds

minimal submanifolds
n pl
GEOM submúltiples mínimos m pl, subvariedades mínimas f pl

English-Spanish technical dictionary. - London, © Routledge. 1997.

Игры ⚽ Поможем написать реферат

Mira otros diccionarios:

  • Shing-Tung Yau — at Harvard Law School dining hall Born …   Wikipedia

  • Bombieri, Enrico — ▪ Italian mathematician born November 26, 1940, Milan, Italy       Italian mathematician who was awarded the Fields Medal in 1974 for his work in number theory. Between 1979 and 1982 Bombieri served on the executive committee of the International …   Universalium

  • H. Blaine Lawson — Herbert Blaine Lawson Jr. (* 4. Januar 1942 in Norristown, Pennsylvania) ist ein US amerikanischer Mathematiker, der sich mit Differentialgeometrie beschäftigt H. Blaine Lawson (rechts) mit Jeff Cheeger am IHES 2007 1969 wurde er an der Stanford… …   Deutsch Wikipedia

  • Hsiang-Lawson's conjecture — In mathematics, Hsiang Lawson s conjecture states that the Clifford torus is the only minimally embedded torus in the 3 sphere S³.References*W. Y. Hsiang and H.B. Lawson, Minimal submanifolds of low cohomogeneity , Jour. of Diff. Geom., 5 (1971)… …   Wikipedia

  • Shiing-Shen Chern — Chern redirects here. For other uses, see Chern (disambiguation). This is a Chinese name; the family name is 陳 (Chern). Shiing Shen Chern Traditional Chinese 陳省身 Simplified Chinese …   Wikipedia

  • List of differential geometry topics — This is a list of differential geometry topics. See also glossary of differential and metric geometry and list of Lie group topics. Contents 1 Differential geometry of curves and surfaces 1.1 Differential geometry of curves 1.2 Differential… …   Wikipedia

  • Cheeger constant — This article discusses the Cheeger isoperimetric constant and Cheeger s inequality in Riemannian geometry. For a different use, see Cheeger constant (graph theory). In Riemannian geometry, the Cheeger isoperimetric constant of a compact… …   Wikipedia

  • Geometrization conjecture — Thurston s geometrization conjecture states that compact 3 manifolds can be decomposed canonically into submanifolds that have geometric structures. The geometrization conjecture is an analogue for 3 manifolds of the uniformization theorem for… …   Wikipedia

  • Gauss–Codazzi equations — In Riemannian geometry, the Gauss–Codazzi–Mainardi equations are fundamental equations in the theory of embedded hypersurfaces in a Euclidean space, and more generally submanifolds of Riemannian manifolds. They also have applications for embedded …   Wikipedia

  • Hermann Karcher — (* 1943) ist ein deutscher Mathematiker, der sich mit Differentialgeometrie beschäftigt. Karcher wurde 1968 bei Kurt Leichtweiß an der TU Berlin promoviert (Konvexe Kurven auf zweidimensionalen Riemannschen Mannigfaltigkeiten) [1] Als Post… …   Deutsch Wikipedia

  • Michael Atiyah — Sir Michael Atiyah Born 22 April 1929 (1929 04 22) (age 82) …   Wikipedia

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”